El Boletín Analítico es un Portal Web + Newsletter dedicado a la comunicación de los avances y aplicaciones de la tecnología analítica.

Área de trabajo: Ciencia de los Materiales.

Título: Caracterización de Silicio Amorfo y Microcristalino usando Espectroscopia RAMAN.

 Título original: Characterization of Amorphous and Microcrystalline Silicon using Raman Spectroscopy.

Autor: Tim Deschaines, Joe Hodkiewicz, Pat Henson, Thermo Fisher Scientific, Madison, WI, USA


Silicon deposited on glass or silicon carbide is widely used in manufacturing photovoltaic cells. Both the proportion and distribution of amorphous and crystalline silicon are critical for performance and are therefore important to monitor. Raman spectroscopy is an ideal technique for this application, as the two forms generate readily distinguishable spectra that lend themselves to simple quantification methods using Beer’s Law. Mapping generates chemical images with detailed information on the spatial distribution of the crystalline and amorphous forms. Since excess excitation laser power can be demonstrated to convert amorphous into crystalline silicon, care must be taken to limit the amount of power used. The Thermo Scientific DXR Raman microscope, which is equipped with a laser power regulator, is ideal for this application, particularly if the method has to be replicated from instrument to instrument at multiple manufacturing plants.



One of the more widely used photovoltaic cell technologies employs silicon deposited on either glass or silicon carbide. Although panels were made initially with either crystalline or amorphous silicon, a judicious combination of the two materials takes advantage of the benefits of each while minimizing their respective disadvantages. Optimal performance depends on reliably being able to make cells with a predetermined ratio and distribution of the two forms. Monitoring ensures the manufacture of economical, highly efficient and long-lasting solar cells. This is an application for which Raman spectroscopy is particularly well suited. Silicon-silicon bonds are symmetrical and result in strong Raman scattering. Crystalline silicon has highly uniform bond angles and bond lengths and exists in a limited number of states. This results in sharp Raman peaks with a characteristic strong band at 521 cm-1. Amorphous silicon is less orderly in its arrangement with a wider array of bond angles, bond energies and bond lengths in addition to dangling bonds. The distribution of possible states leads to a broad Raman band centered at 480 cm-1 that is readily distinguishable from that of crystalline silicon.


Para recibir el PDF completo con toda la información, completa el siguiente formulario:

    Complete el siguiente formulario y CONSULTE A UN EXPERTO o solicite un pdf.

    icono-pdf Solicitar más info


    Área de trabajo: Ciencia de los Materiales. Título: Observando la Orientación Molecular en...

    Área de trabajo: Ciencia de los Materiales. Título:  Espectroscopia RAMAN, Industrias y...

    Título: Caracterización de Grafeno por Espectroscopía RAMAN. Título original: Characterizing...

    Dejar un comentario